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Summary

Sexually dimorphic behaviors, qualitative or quantitative differences in behaviors between the

sexes, result from the activity of a sexually differentiated nervous system. Sensory cues and sex

hormones control the entire repertoire of sexually dimorphic behaviors, including those commonly

thought to be charged with emotion such as courtship and aggression. Recent studies show that

these over-arching control mechanisms regulate distinct genes and neurons that in turn specify the

display of such behaviors in a modular manner. How such modular control is transformed into

cohesive internal states that correspond to sexually dimorphic behavior is poorly understood. We

summarize current understanding of the neural circuit control of sexually dimorphic behaviors

from several perspectives, including how neural circuits in general, and sexually dimorphic

neurons in particular, can generate sex differences in behavior, and how molecular mechanisms

and evolutionary constraints shape these behaviors. We propose that emergent themes such as the

modular genetic and neural control of dimorphic behavior are broadly applicable to the neural

control of other behaviors.

Introduction

Men and women exhibit sex differences in behaviors that immediately enhance reproductive

success as well as in tasks that involve higher cognitive function. It is actively debated

whether such sex differences are genetically wired or a byproduct of societal influences.

While the jury may be out for the underpinnings of these behaviors in humans, research in

model organisms leaves little doubt that such manichean distinctions between nature and

nurture are simplistic. Indeed research on diverse animals unequivocally demonstrates the

importance of both genes and experience on sexually dimorphic behaviors. Nevertheless

these studies underscore the primacy of genetically programmed mechanisms that control

the development and activation of the neural circuits underlying these behaviors.
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Sex-typical displays of behaviors such as mating and aggression are genetically hardwired in

the sense that they can be displayed by animals without training. The activation of the

underlying neural circuits is controlled by sensory cues as well as by physiological signals

such as sex hormones. Such external and internal control mechanisms ensure that these

social behaviors are displayed in the appropriate context. Many animals, including mice,

secrete pheromones, chemosensory cues that signal social and reproductive status to other

members of the species, to initiate social interactions (Karlson and Lüscher, 1959). Sex

steroid hormones secreted by the gonads are the critical internal signals that control these

behaviors in vertebrates (McEwen, 1981). The identity of the pheromone and hormone-

responsive neural circuits that drive specific sexually dimorphic behaviors remains elusive.

By contrast, we have significant insight whereby chemosensory input and sex hormones

control the development or activation of specific neurons that influence these behaviors

(Liberles, 2014; Morris et al., 2004; Touhara and Vosshall, 2009; Wu and Shah, 2011).

Our review discusses the mechanisms that regulate sexually dimorphic behaviors in

mammals with a specific focus on mice and the assumption that similar mechanisms are

likely to operate in humans. The literature on sexually dimorphic behaviors in other

organisms has been reviewed elsewhere (Baum, 2003; Cahill, 2006; Crews and Moore,

2005; Dickson, 2008; Manoli et al., 2006; Moore et al., 2005; Newman et al., 1997; Perkins

and Roselli, 2007; Portman, 2007; Wade and Arnold, 2004; Wallen, 2005). We focus largely

on sex differences in mating and aggression because the underlying neural pathways have

been studied in some detail. We do not list all known cellular or molecular sexual

dimorphisms in the nervous system because these have been documented extensively

(Cahill, 2006; Cooke et al., 1998; Simerly, 2002; De Vries, 1990). Where instructive, we

discuss findings in other model organisms, especially flies, that provide insight into the

neurobiological basis of sex differences in behavior.

A framework to understand how the brain can generate sexually dimorphic behaviors

Males and females transform sensory input into sexually dimorphic behaviors, suggesting

that such behaviors are generated by neural circuits that differ between the sexes. This

insight has led to a highly successful effort to identify anatomical or molecular sex

differences in neuronal populations in order to gain an entry-point into the neural circuits

underlying gender-typical behaviors (Cachero et al., 2010; Cahill, 2006; Cooke et al., 1998;

Jarrell et al., 2012; Liu and Sternberg, 1995; Nottebohm and Arnold, 1976; Raisman and

Field, 1971; Simerly, 2002; De Vries, 1990; Yu et al., 2010). How these genes or neurons

control neural circuit function is unclear because a neural circuit that controls a sexually

dimorphic display has yet to be delineated from sensory input to motor output.

Absent the complete delineation of such a neural circuit, we envision several mutually non-

exclusive neural circuit wiring diagrams that enable sexually dimorphic output (Figure 1). In

the most extreme case, such a neural circuit is unique to one sex. One example may be the

circuit for penile muscles involved in coitus, which are controlled by motor neurons in the

spinal nucleus of the bulbo cavernosus (SNB), a population of neurons largely absent in

females (Breedlove and Arnold, 1980). Given that wild type females of many species can

display some male-type mounting behavior (see later), if the neural pathway controlling
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these penile muscles is one component of a singular male sexual behavior circuit then at

least some neural centers pre-synaptic to the SNB are likely to be shared between the sexes.

In this scenario, the gender dimorphism in SNB neurons may represent an example of a

shared neural circuit that differs between the sexes at the level of motor neurons. Sex

differences at the level of sensory input can also drive sexually dimorphic behaviors. One

example of a neural circuit with well-defined sensory sex differences is that underlying

female pheromone-elicited chemo tactic flight in the male moth Bombyx mori (Nakagawa et

al., 2005; Sakurai et al., 2004; Touhara and Vosshall, 2009). Male but not female moths

express chemo receptors for the pheromone mixture emitted by females, and the antennal

sensory neurons expressing these receptors project to unique targets in the male antennal

lobe. However, the chemo taxis elicited by the presence of the female pheromone engages

output pathways that control flight, a behavior shared between the two sexes.

Given that most behaviors are common to the two sexes, males and females probably share

many components of a neural circuit that drives a behavior of the opposite sex. For example,

biting during inter male aggression, feeding, and maternal retrieval of a wandering pup all

entail locomotion and coordinated jaw movements. In such instances, sexually dimorphic

behavior is likely to emerge from sex differences in neuronal populations inserted

(intermediary neurons in Figure 1) within shared neural circuits. Consistent with this notion,

most cell or molecular sex differences in neuronal populations are quantitative rather than

all-or-nothing qualitative sexual dimorphisms. We anticipate that real world circuits

underlying dimorphic behaviors are likely to be a composite of the wiring diagrams we have

discussed here.

A primer on sex determination and sexual differentiation

Whether a sexually dimorphic behavior is innate, in the sense that it can be displayed

without prior training, or experiential, animals determine sex early in their development, and

sex determination initiates many irreversible sexual differentiation events that influence how

the genome and the environment interact to influence gender-specific behaviors. Prior to sex

determination, which occurs at mid-gestation in mice, the brain and gonadal primordia are

bipotential and can differentiate in a male or female-typical pattern.

The Y chromosome is determinative for the male sex (Figure 2). A single Y-linked locus,

Sry, is necessary and sufficient to masculinize the embryo (Gubbay et al., 1990; Koopman et

al., 1991). Sry encodes a transcriptional regulator (but see (Lalli et al., 2003)), and its

expression in the bipotential gonads drives their differentiation into testes. Testicular

hormones subsequently drive male-pattern sexual differentiation of the body as well as the

brain. The embryo is pre-patterned to differentiate as a female in the absence of functional

Sry such that the gonads differentiate into ovaries. Moreover, it is the absence of testicular

hormones rather than the presence of ovarian hormones that initiates feminization of the

body and the brain (Jost, 1983). Thus the default mammalian body plan is female.

Although early feminization of the body and the brain is independent of the ovarian

hormones estrogen and progesterone, sexual maturation and function of various tissues are

controlled by these sex steroids. These hormones regulate sexual differentiation and

behavior in females via nuclear hormone receptors encoded by distinct but homologous

Yang and Shah Page 3

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



genes, ERα (or Esr1) and ERβ (or Esr2) for estrogen and PR (or Pgr) for progesterone

(Figure 3) (Burris et al., 2013). The testes secrete testosterone which masculinizes the

external body phenotype and the brain by signaling through its nuclear hormone receptor,

the androgen receptor (AR) (Figure 3) (Burris et al., 2013). As we discuss later, many

actions of testosterone are mediated subsequent to its conversion into estrogen locally in the

brain and activation of signaling via ERα or ERβ.

Sex chromosome linked genetic loci that remain to be identified may also directly control

the development and function of neural circuits underlying innate social behaviors (Bonthuis

et al., 2012; Carruth et al., 2002; Dewing et al., 2003; Grgurevic et al., 2012; De Vries et al.,

2002; reviewed in McCarthy and Arnold, 2011). These loci subtly regulate male mating and

aggression in a manner that mirrors the sex chromosome complement rather than circulating

sex hormones. Thus, in contrast to the profound influence of sex hormones on sexually

dimorphic displays, such genetic loci appear to exert modulatory effects on these behaviors.

In addition to such sex chromosome based mechanisms, potentially hormone-independent

epigenetically regulated gene expression patterns may also regulate sexual differentiation of

the brain. Recent studies have identified many potentially imprinted genes that are

transcribed, often in a sexually dimorphic manner, in the developing and adult brain

(DeVeale et al., 2012; Gregg et al., 2010a, 2010b). The functional relevance of these loci to

sexually dimorphic behaviors is presently unclear, but other imprinted genes have indeed

been implicated in the control of sexually dimorphic behaviors, including aggression

(Garfield et al., 2011; Lefebvre et al., 1998; Li et al., 1999). In summary, gonadal sex

hormones appear to act as the master regulators of sexual differentiation in mammals, and

hormone-independent genetic loci may exert modulatory control of sexually dimorphic

behaviors.

Evolution of the mechanisms underlying sex determination and sexual differentiation

Despite the near universal nature of gender differences in reproductive behavior in animals –

even birds, bees, and fleas do it – one theme emerging from work in different species is that

the molecular control of sexual determination and differentiation has evolved rapidly even

among closely related species (Cline and Meyer, 1996; Marín and Baker, 1998; Matson and

Zarkower, 2012). In contrast to the close conservation of most genetic pathways regulating

development, there is little similarity between the pathways controlling sex determination

and early sexual differentiation of the brain in flies and mice (Figure 2). Sex lethal,

transformer, doublesex, and fruitless in the fly may be analogous to Sry and the genes

encoding sex hormone receptors in mice, but they are not encoded by orthologous genes.

Doublesex may be an exception in the sense that orthologs have been found in flies, worms,

and vertebrates, but whether it performs identical functions across diverse animals is

unclear. Sex determination and differentiation do appear operationally similar between flies

and mice in that they are controlled by a regulatory cascade, initiated by sex lethal in flies

and Sry in mice (Figure 2). However, sex determination and sexual differentiation in the fly

are cell autonomous such that each cell undergoes a cell fate decision to become a male or

female cell. By contrast, sex determination of the gonads in mice leads to the secretion of

sex hormones that act non-cell autonomously elsewhere in the body and the brain to guide
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sexual differentiation. In contrast to the mouse, the default fly body plan, in the absence of

sex lethal but with the appropriate chromosomal complement, appears to be male (Figure 2).

Surprisingly, although the genes involved in sex determination and differentiation have

diverged rapidly, some of the same neurotransmitter mechanisms appear to be utilized for

reproductive behaviors across multiple species (Asahina et al., 2014; Caldwell et al., 2008;

DeVries et al., 1997; Garrison et al., 2012; Winslow et al., 1993; Young et al., 1997).

Whether such shared signaling pathways always represent evolutionary conservation or

rather reflect, in some cases, convergent evolution of a limited set of inter-neuronal

communication signals remains to be determined. In either instance, it will be important to

understand the selective advantage of using a particular neurotransmitter to control similar

reproductive behavior across species. Similar to the genes regulating sex determination and

differentiation, the specific displays of sexually dimorphic behaviors also evolve quickly.

This has been well documented in the divergence of the stereotyped male courtship ritual

across various drosophilid species (Spieth, 1952). For example, male flies of different

drosophilid species, similar to male songbirds of different species, sing a species-specific

song to which a female fly of the corresponding species is most attracted (Konishi, 1985;

Wheeler et al., 1991). By contrast, male fruit flies utilize chemosensory pathways to

recognize conspecific females and to reject potential mates from other species (Fan et al.,

2013). Thus there can be rapid divergence of molecular and behavioral reproductive

mechanisms between the sexes and across species. Such divergence is to be expected

perhaps be cause these mechanisms are subject to sexual selection and are critical to

maintain reproductive isolation and continued propagation of individuals within a species.

Pheromonal control of sexually dimorphic behaviors

Pheromonal control of mating and aggression in mice—In mice and many other

animals, pheromones detected by sensory neurons in the nose are the predominant sensory

cues that trigger mating and aggression. Pheromones are recognized by chemosensory

neurons located in two sensory epithelia in the nose, the main olfactory epithelium (MOE)

and the vomeronasal organ (VNO) (Figure 4) (Zufall and Leinders-Zufall, 2007). Neurons in

these two sensory epithelia each express G-protein coupled receptor (GPCR)-type chemo

receptors from unrelated gene families, suggesting that they detect distinct chemosensory

cues (reviewed in (Liberles, 2014; Touhara and Vosshall, 2009)).

Traditional lesioning studies have long implicated pheromonal signaling via the VNO in the

control of male mating and aggression (Wysocki and Lepri, 1991). However, genetic studies

reveal surprising complexity in the chemosensory control of these behaviors. Male mice

with intact MOE but genetically disabled for VNO signaling mate with females essentially

normally but exhibit a profound reduction in inter male aggression (Kim et al., 2012;

Leypold et al., 2002; Stowers et al., 2002). By contrast, males with an intact VNO but

genetically disabled for MOE signaling exhibit a profound reduction in mating and inter

male aggression (Mandiyan et al., 2005; Wang et al., 2006; Yoon et al., 2005). Thus, inter

male aggression relies on both the MOE and VNO whereas male-typical sexual displays

require an intact MOE but not the VNO (Figure 5A).
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Males and females genetically disabled for VNO signaling exhibit male-pattern sexual

behavior with mice of either sex (Kimchi et al., 2007; Leypold et al., 2002; Stowers et al.,

2002). These findings suggest that male pheromones detected by the VNO normally inhibit

sexual behavior and trigger aggression in males (Figure 5A). However, females normally do

not attack male mice, and there appears to be no qualitative sex difference in the expression

of the chemoreceptor repertoire in the VNO. It is likely therefore that females do not attack

males because of a sexual dimorphism downstream of vomeronasal sensory input in the

neural circuit that mediates aggression. Females of many species, including mice, exhibit

low frequency male-pattern mating towards conspecific females (Baum et al., 1974; Beach,

1947; Jyotika et al., 2007; Kimchi et al., 2007; Spors and Sobel, 2007). This suggests that

the neural circuit for masculine sexual behavior is present in both sexes, but it is normally

inhibited by sensory input from the VNO (Figure 5A). One signal that over-rides this

sensory inhibition is the male sex hormone testosterone, as adult wild type females

supplemented with testosterone display male-pattern mating towards females at male-typical

frequencies (Figure 5A) (Edwards and Burge, 1971a). These studies suggest a model in

which sex differences in the neural circuit underlying male sexual behavior regulate the

probability of displaying this behavior such that VNO sensory input decreases and

testosterone increases this probability (Figure 5A).

These genetic studies also show that the VNO and MOE are required for female behaviors,

including sexual receptivity and maternal aggression, a behavior that nursing females

display toward unfamiliar intruder mice (Fraser and Shah, 2014; Gandelman, 1972; Leypold

et al., 2002; Wang and Storm, 2011). Numerous pheromones that regulate sex-typical

behaviors or physiology have been identified. The identification of the chemo receptors that

recognize these pheromones will permit delineation of the neural circuits that respond to

these cues. This should already be feasible in the case of female sexual behavior. ESP1 is a

peptidergic pheromone found exclusively in post-pubertal male lacrimal gland secretions

(Kimoto et al., 2005), and ESP1 and its chemoreceptor V2Rp-5 are required for the normal,

high levels of female sexual receptivity (Haga et al., 2010). These studies now provide a

molecular genetic means to trace V2Rp-5 expressing neurons into the central circuits that

control female sexual behavior.

Neural circuits that transduce pheromonal cues into sexually dimorphic
behaviors—The anatomic segregation of MOE and VNO neurons is maintained in their

central projections, which innervate the main olfactory bulb (MOB) and the accessory

olfactory bulb (AOB), respectively (Figure 4) (Dulac and Wagner, 2006; Zufall and

Leinders-Zufall, 2007). Mitral and tufted cells, projection neurons of the MOB, send axons

to olfactory cortical regions associated with learning of general odorants as well as to the

posterolateral cortical amygdala (PLCO), a region that may regulate instinctual behaviors

(Figure 4) (Kang et al., 2011a; Scalia and Winans, 1975; Shipley and Adamek, 1984;

Sosulski et al., 2011). Thus, the MOE pathway may control innate and learned odor-guided

behaviors via projections to distinct brain regions.

AOB projection neurons send their axons to the medial amygdala (MeA) and the

posteromedial cortical amygdala (PMCO) and, to a lesser degree, to the medial division of

the posteromedial bed nucleus of the stria terminalis (BNSTmpm) (Figure 4) (von
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Campenhausen and Mori, 2000; Scalia and Winans, 1975; Winans and Scalia, 1970). As we

discuss later, these regions influence the display of most sexually dimorphic behaviors. Both

the VNO and MOE regulate male-pattern sexual displays and inter-male aggression,

suggesting cross-talk between or convergence of these two chemosensory circuits. Indeed

mapping of the efferent connections of the projection targets of the MOB and AOB reveals

such convergence in the BNST and several hypothalamic nuclei (Figure 5B) (Kevetter and

Winans, 1981a, 1981b; Licht and Meredith, 1987; Meredith, 1998; Shipley et al., 1996). In

addition some, but not all, studies find that the MeA may also receive afferents from the

MOB, there by providing a site of convergence of MOE and VNO pathways just one

synapse removed from the nose (Kang et al., 2009, 2011b; Licht and Meredith, 1987;

Sosulski et al., 2011).

The finding that male and female chemosensory neurons express the same repertoire of

pheromone receptors immediately poses the question as to how shared sensory input is used

to generate sexually dimorphic output. At least in flies, some pheromone-sensing neurons

that elicit distinct behaviors in both sexes in response to the same pheromone project to

central circuits that are sexually dimorphic (Datta et al., 2008; Kohl et al., 2013; Ruta et al.,

2010). How such sex differences direct sexually dimorphic responses in flies is still an open

question. In mice, many sex differences have also been described in central olfactory

pathways (Guillamón and Segovia, 1997). How such dimorphic neurons in the mouse brain

are connected with pheromone-sensing neurons in the nose is unclear. These sex differences

in mice develop under the control of sex hormones, and in adult animals, the central neurons

that relay olfactory information are rich in sex hormone receptor expression, thereby

affording the potential for sexually dimorphic regulation of the physiology and function of

olfactory pathways (Figure 5B). Such convergence of sensory input and hormonal signals in

shared neural circuits likely allows the animal to assimilate information about the external

world and internal physiological states and to generate sexually dimorphic behaviors.

Hormonal control of sexually dimorphic behaviors

Historical framework for understanding hormonal control of sexually
dimorphic behaviors—The influence of gonadal secretions on behavior and physiology

has long been appreciated. Studies in birds in the 19th century correlated the presence of

male song or sexual displays with the presence of testicular secretions (reviewed in (Fusani,

2008)). Subsequent work in male rodents showed that testosterone restored sexual and

aggressive displays in adult castrates (Beeman, 1947; Shapiro, 1937; Stone, 1939).

Similarly, ovarian extracts or estrogen and progesterone could elicit estrus and sexual

receptivity in castrate female rodents (Allen et al., 1924; Dempsey et al., 1936; Ring, 1944;

Wiesner and Mirskaia, 1930). Such studies therefore indicated that adult sex hormones were

necessary and sufficient for the display of mating, aggression, and the estrous cycle.

Some of the earliest work elucidating a developmental role for gonadal hormones focused

on the neural control of the estrous cycle (Harris, 1937, 1964; Harris and Jacobsohn, 1952;

Pfeiffer, 1936; Sawyer et al., 1949). These studies showed that the neonatal hypothalamus

was bipotential, and that testosterone irreversibly inhibited the neonatal hypothalamus from

supporting normal ovarian function and estrous cyclicity. By contrast, neonatal castration
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permitted the male hypothalamus to support ovarian function and the estrous cycle in adult

life.

These developmental and adult effects of sex hormones on endocrine physiology were

subsequently shown to be equally applicable to reproductive behaviors (Arnold, 2009;

Phoenix et al., 1959). In mice, neonatal testosterone irreversibly defeminized sexual

receptivity and elicited male-typical territorial aggression upon adult provision of

testosterone (Bronson and Desjardins, 1969; Edwards, 1968, 1969, 1971). Such work

revealed that the testes acted on a bipotential brain during a critical perinatal developmental

window to regulate adult behaviors. During this period, the ovaries appeared unnecessary

for the subsequent display of female sexual behavior. In accord with these experimental

observations, the testes secrete testosterone during this critical period whereas the ovaries

are quiescent. The onset and duration of this critical period of sexual differentiation of the

brain is species-specific, and in mice it extends from late gestation into the first few days

after birth (Corbier et al., 1992; Motelica-Heino et al., 1993; Pang and Tang, 1984). In

contrast to the perinatal requirement of gonadal hormones in males, the adult display of

gender-typical behaviors requires gonadal hormones in both sexes. The enduring,

developmental influence of sex hormones is referred to as their organizational function,

whereas the reversible, adult role of sex hormones in the acute regulation of physiology and

behavior is referred to as their activational function (Figure 6A)(Phoenix et al., 1959). The

notion of distinct developmental, including peri-pubertal, and adult roles of sex hormones is

a cornerstone of contemporary understanding of how these steroids control sexually

dimorphic behaviors (reviewed in (Arnold, 2009; Schulz et al., 2009)).

An important advance in understanding the hormonal control of sex-typical behaviors came

about from observations that many developmental and adult effects of testosterone were

mimicked by estrogen (Antliff and Young, 1956; Ball, 1937; Bronson and Desjardins, 1968;

Edwards and Burge, 1971b; Finney and Erpino, 1976; Gorski and Wagner, 1965; Södersten,

1973; Wallis and Luttge, 1975; Whalen and Nadler, 1963). Given that testosterone or a

related androgen is a precursor for estrogen in vivo (Figure 3), Naftolin proposed that

circulating testosterone in males is converted into estrogen in specific brain regions via the

action of the enzyme aromatase, a proposal referred to as the aromatization hypothesis

(MacLusky and Naftolin, 1981; Naftolin et al., 1971a, 1971b). Studies in diverse vertebrates

now support such local synthesis of estrogen in the male brain, although the extent of the

masculinizing effects of estrogen appears to be species-specific (Amateau et al., 2004;

Balthazart and Ball, 1998; Baum, 2003; Finkelstein et al., 2013; Forlano et al., 2006;

Holloway and Clayton, 2001; Lephart, 1996; Lieberburg et al., 1979). How is the brain of

the female mouse protected from the developmental, masculinizing effects of estrogen? As

we noted above, the ovaries are quiescent during this critical period and there is

consequently little, if any, estrogen synthesis in female embryos. Moreover in mice and

many other species, the embryonic liver-derived a-fetoprotein sequesters circulating

estrogen produced by the ovaries (Bakker et al., 2006; MacLusky and Naftolin, 1981).

Together, these studies make a compelling case for estrogen in regulating differentiation of

the male brain and behavior.
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Recent insights into the hormonal control of sexually dimorphic behaviors—
Recent genetic studies have provided previously unanticipated insights into the mechanisms

whereby sex hormones control dimorphic behaviors (Figure 6A). Females constitutively null

for PR or ERα are not sexually receptive, thereby confirming the importance of the cognate

hormones in this behavior (Blaustein, 2008; Kudwa and Rissman, 2003; Lydon et al., 1995;

Ogawa et al., 1996, 1998; Rissman et al., 1997). By contrast, ERβ is not required for female

sexual receptivity, but it appears essential to defeminize this behavior in male mice (Krege

et al., 1998; Kudwa and Rissman, 2003; Kudwa et al., 2005; Ogawa et al., 1999). Thus, it

appears that the neonatal testosterone surge in male mice defeminizes sexual behavior at

least in part subsequent to conversion into estrogen and activation of ERβ.

The evidence that estrogen signaling is required for male behaviors is convincing. Male

mice null for aromatase exhibit profound deficits in mating and aggression (Honda et al.,

1998; Matsumoto et al., 2003; Toda et al., 2001a, 2001b). Targeted deletions of ERα and

ERβ show that ERα and ERβ are required for male sexual behavior whereas only ERα is

essential for adult male-typical aggression (Krege et al., 1998; Ogawa et al., 1997, 1999,

2000; Scordalakes and Rissman, 2003; Wersinger et al., 1997). As discussed earlier,

estrogen is also sufficient to masculinize the brain during development. Supplementing

neonatal females with estrogen suffices for the later display of male pattern territorial

behaviors, albeit at lower levels than normally observed in wild-type males (Wu et al.,

2009). Thus, neonatal estrogen masculinizes the female as observed by her male-typical

aggression toward males. Strikingly, this neonatal estrogen also drives subsequent territorial

marking (Wu et al., 2009), which can be displayed without social interactions and may

therefore be an objective surrogate for an internal representation of one aspect of

masculinity. These masculine behaviors in females neonatally provided with estrogen are

abolished upon removal of the ovaries, indicating that they are dependent on gonadal

estrogen release (Wu et al., 2009). Thus, estrogen exposure is sufficient to masculinize the

brain during development, and adult estrogen permits low intensity male-typical behavioral

displays in the adult. More broadly, these studies show that the adult gonads of either sex

can support male-type behaviors provided the neonatal mouse has been exposed to estrogen.

In contrast to the masculinization effected by estrogen, testosterone signaling via AR

appears essential to scale the intensity of masculine behaviors. Male mice constitutively

mutant for AR do not display male-typical mating or aggression (Ohno et al., 1974; Sato et

al., 2004). Such males have a normal neonatal testosterone surge, but the testes atrophy

subsequently, leading to a loss of circulating testosterone in adults (Sato et al., 2004).

Consequently, these males are developmentally masculinized, and the behavioral deficits

can be rescued to a large degree with testosterone (or estrogen) in adult life (Olsen, 1992;

Rosenfeld et al., 1977; Scordalakes and Rissman, 2004; Wu et al., 2009). Very few cells

express AR in the wild type mouse brain at the time of the neonatal surge of testosterone

whereas many cells in regions such as the BNSTmpm, POA, and MeA express one or both

nuclear ERs and aromatase (Juntti et al., 2010). The adult pattern of sexually dimorphic AR

and aromatase expression is established several days after the neonatal testosterone surge,

and this masculinization is dependent on estrogen (Juntti et al., 2010; Wu et al., 2009).

Taken together, these studies suggest that testosterone signaling via AR is not required to

masculinize the neural substrates for behavior, but rather it plays an activational role in male
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behavioral displays. Strikingly, this hypothesis has been validated in male mice bearing a

nervous system-restricted deletion of AR (Juntti et al., 2010; Raskin et al., 2009). Deletion

of AR in the brain prior to the perinatal testosterone surge generated male mutants with

masculinized genitalia, male-typical testosterone titers, and a loss of AR expression in the

adult brain. These mutant males exhibited a male-typical repertoire of mating and territorial

aggression, albeit with a reduced frequency or intensity of specific components of these

behaviors (Juntti et al., 2010). Thus, testosterone signaling via AR is not required for

developmental masculinization of the brain, but it is essential to amplify the adult display of

male-typical mating and territoriality.

These genetic studies make a compelling case for the primacy of estrogen in developmental

masculinization of the circuits for mating and territorial aggression and for a dual control by

testosterone and estrogen signaling in the adult display of these behaviors. A surprising

finding from such studies is the circumscribed distribution of aromatase-expressing neurons

(Figure 5B), which localize to subsets of cells within a few regions, including the

BNSTmpm, MeA, and the preoptic hypothalamus (POA) in mice (Wu et al., 2009). This

limited distribution of aromatase-positive neurons suggests that estrogen may signal to a few

critical centers to regulate all male typical social behaviors. Alternately, as has been

suggested in birds (Balthazart and Ball, 1998; Peterson et al., 2005), estrogen may be

distributed widely from such circumscribed sites of synthesis. It is unclear whether such

aromatase-expressing neurons function solely as neuroendocrine cells that synthesize

estrogen or rather participate directly within the neural circuits that regulate sexually

dimorphic behaviors.

Mechanisms whereby sex hormones control sexual differentiation of the
nervous system and behavior—The cellular mechanisms activated by sex hormone

receptor signaling to drive sexual differentiation are similar, if not identical, to those that

control neuronal number, morphology, projection patterns, and gene expression during

neural development. Such mechanisms as they relate to sexual differentiation have been

thoroughly reviewed elsewhere (Forger and de Vries, 2010; McCarthy and Arnold, 2011;

Morris et al., 2004; Simerly, 2002; Toran-Aller and, 1984), and we do not discuss these

here. By comparison, we know surprisingly little about the molecular pathways activated by

sex steroids to regulate these cellular processes. In addition to binding the nuclear hormone

receptors discussed above, sex hormones are also thought to bind transmembrane receptors.

However, with the exception of GPR30, a GPCR for estrogen, such transmembrane

receptors for other steroid hormones remain to be identified definitively (Burris et al., 2013;

Revankar et al., 2005). GPR30 appears not to be required for sexually dimorphic behaviors

in mice (Otto et al., 2009; Wang et al., 2008). Many studies also indicate that nuclear

receptors for sex hormones can effect rapid changes in cellular function by participating in

cytoplasmic or membrane-associated signaling pathways that do not lead to changes in gene

expression (Foradori et al., 2008; Henderson, 2007; Lishko et al., 2011; Micevych and

Dominguez, 2009; Vasudevan and Pfaff, 2008). This is surprising because the standard view

of nuclear hormone receptors has been that they are transcription factors that can bind to

consensus DNA sequence elements in the genome to regulate gene expression (Figure 6B)

(Burris et al., 2013). These non-transcriptional modes of sex hormone signaling remain
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poorly understood in the sense that we do not know the specific protein domains of sex

hormone receptors involved in these pathways. At least in the case of ERα, genetic studies

show that the DNA-binding domain is essential for the normal display of sexually dimorphic

behaviors (Jakacka et al., 2002; McDevitt et al., 2007, 2008). These findings suggest that

ERα, and perhaps the other nuclear receptors for sex hormones, largely regulates sexually

dimorphic behaviors by controlling gene expression. However, no direct transcriptional

targets of sex hormone signaling have been identified in the nervous system. In other words,

we have yet to learn of a genetic locus whose expression in the nervous system is sexually

dimorphic and controlled via occupancy of cis-regulatory DNA sequences by a sex hormone

receptor.

We imagine that sex hormones regulate gene expression programs that correspond to their

enduring organizational and transient activational roles in the developing and adult animal.

The long-term developmental effects of sex hormone signaling are likely reflected in sex

differences in morphological features and epigenetic control of gene expression (reviewed in

(McCarthy and Nugent, 2013)). Epigenetic programming would permit expression of

distinct genes and behaviors upon exposure to the same sex hormone in adult life; for

example, such mechanisms may explain why estrogen elicits inter male aggression and

sexual receptivity in adult castrate males and females respectively (Edwards and Burge,

1971b). The extent and specificity of epigenetic marks programmed by sex hormones in the

brain remain to be determined. In any event, sex hormone receptors have been shown to

associate, at least in cell lines, with histone-modifying enzymes that can activate or repress

gene expression, and it will important in future studies to identify the genes regulated by this

mechanism in the brain (Leader et al., 2006; Rosenfeld et al., 2006).

In contrast to the lack of insight on the molecular mechanisms of sex hormone action, many

sex differences in gene expression have been identified, and at least some of these are

dependent on sex hormones. The nuclear sex hormone receptors and aromatase display some

of the most obvious and well characterized differences in gene expression in adult mice

(Grgurevic et al., 2012; Shah et al., 2004; Wersinger et al., 1997; Wu et al., 2009; Xu et al.,

2012; Yang et al., 2013; Zuloaga et al., 2014). There are many other genes whose expression

in the mouse brain is also sexually dimorphic (Dewing et al., 2003, 2006; Edelmann et al.,

2007; Gagnidze et al., 2010; Rinn et al., 2004; De Vries, 1990; Wolfe et al., 2005; Xu et al.,

2012; Yang et al., 2006). Despite the identification of such dimorphically expressed genes in

the brain, there has been no concerted effort to understand whether they influence sexually

dimorphic behaviors. A recent study utilized expression profiling to identify many novel sex

differences in gene expression in specific centers in the adult mouse hypothalamus, BNST,

and MeA (Xu et al., 2012). These gene expression dimorphisms do not correspond to

absolute sex differences in cell number, and they often only label a subset of neurons within

a brain region. These dimorphic expression patterns are regulated by circulating sex

hormones in the adult, although it is unclear whether these genes are direct transcriptional

targets of sex hormone receptors. Strikingly, mice singly mutant for these genes exhibited

specific deficits in one or a few components of male or female sexual behavior (Brs3, Sytl4,

Cckar), inter male aggression (Brs3), or maternal care (Irs4) while maintaining a sex-typical

repertoire of other behaviors (Figure 7). Each of these genes is expressed in particular

Yang and Shah Page 11

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



neurons within the hypothalamus and the MeA or elsewhere, implicating one or more

neuronal pools in distinct components of sex-typical behaviors. This notion has been

validated in the case of Cckar, a GPCR for the neuropeptide cholecystokinin. Cckar is

required for the normal high levels of female sexual receptivity (Xu et al., 2012), and it

labels a subset of neurons within the VMH that is also required for the display of this

behavior (Yang et al., 2013). More generally, the specificity of behavioral deficits observed

in mice mutant for such genes is in complete contrast to the global behavioral deficits

observed in castrated mice or mice mutant for sex hormone receptors. These findings

suggest a model in which individual dimorphic behaviors or components thereof are

controlled in a modular manner by genetically separable pathways that are downstream of

sex hormone signaling (Figure 7). This genetic modularity in the control of complex

sexually dimorphic social behaviors may allow for evolutionary selection of the components

of these behaviors that are critical for reproductive success. As we discuss later, such genetic

modularity is likely a general principle that underlies other innate behaviors in diverse

animals.

What is the function of sexually dimorphic neuronal populations?

Numerous cell and molecular sex differences have been identified in neurons and other cell

types in virtually every sexually reproducing species. In some cases, perhaps especially so in

invertebrates, the sex differences are qualitative such that particular neurons are unique to

one sex (Figure 8). In such instances, it can be straightforward to determine the function of

sexually dimorphic neurons. For example, the male-specific P1 neuronal cluster expresses

FruM and appears necessary and sufficient for initiation of singing during courtship (Kimura

et al., 2008; Kohatsu et al., 2011; von Philipsborn et al., 2011).

Functional analysis of sexual dimorphisms is complicated in cases where sex differences

represent quantitative rather than qualitative cell or molecular differences in neurons. A

quantitative sex difference may represent a dimorphism in the same cell or molecular feature

in shared neurons. It is conceivable that smaller subsets of neurons embedded within such

shared but quantitatively dimorphic neuronal populations are, in fact, unique to one sex.

Such smaller subsets may only become apparent upon careful examination of cellular

features such as axon projections or gene expression. It is unclear how quantitative sex

differences relate to sexually dimorphic behaviors in the two sexes (De Vries and Boyle,

1998). It is possible that a dimorphic neuronal population is functional in both sexes, and it

regulates the probability of displaying the same behavior, thereby leading to a sex difference

in this behavior (Figure 8). In the extreme version of this model, the dimorphic neurons in

one sex are non-functional, and the probability of displaying the behavior is zero. A

quantitative sex difference could also permit the neurons to be functionally bivalent such

that they regulate distinct sexually dimorphic behaviors in both sexes.

We recently examined the function of the quantitative sex difference in the number of PR-

expressing neurons in the mouse VMHvl (Figure 5B) (Yang et al., 2013). There are more

PR-positive neurons in the female VMHvl, and these neurons also express Cckar and ERα

(Yang et al., 2013). Similar to PR and ERα, Cckar is also essential for normal female sexual

receptivity (Xu et al., 2012). Importantly, PR-expressing VMHvl neurons arise from the
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same developmental lineage in both sexes (Grgurevic et al., 2012), thereby affording

functional characterization of developmentally related dimorphic neurons. We found that

genetically targeted ablation of these PR-expressing neurons in the adult female VMHvl led

to a profound reduction in female sexual receptivity (Yang et al., 2013). Ablation of the

corresponding male neurons resulted in significant reduction in male sexual behavior and

aggression. Thus, PR-expressing VMHvl cells constitute a functionally bivalent group of

sexually dimorphic neurons (Yang et al., 2013). It will be interesting to test whether all

quantitative sex differences in the mouse brain are also functionally bivalent.

Whether a sex difference in neurons is quantitative or qualitative, individual groups of such

neurons are dimorphic in multiple dimensions. For example, the PR-expressing VMHvl

neurons exhibit sex differences in gene expression, cell density and number within this

region, and in their long distance projections (Yang et al., 2013). How each of these

molecular and cellular sexually dimorphic features relates to sexually dimorphic behavioral

output is unknown, and we anticipate that it will be difficult to address this issue with

current approaches.

Which neural circuits underlie mating and aggression?

Decades of rodent lesion or stimulation studies have revealed a limited and overlapping set

of sexually dimorphic brain regions that control sexual behavior and aggression in the two

sexes (Figure 5B) (Colpaert and Wiepkema, 1976; Commins and Yahr, 1984; Emery and

Sachs, 1976; Goy and Phoenix, 1963; Hennessey et al., 1986; Kondo et al., 1990, 1998;

Kruk et al., 1979; Lin et al., 2011; Liu et al., 1997; Olivier and Wiepkema, 1974; Pfaff and

Sakuma, 1979a, 1979b; Yamanouchi and Arai, 1985). These centers, including the BNST,

POA, MeA, and VMH, are interconnected and encompassed largely within the pheromone

processing neural pathways that regulate these behaviors (Figure 5B) (reviewed in

(Swanson, 2000)). With few exceptions, subsets of adult neurons within these regions also

express aromatase or one or more sex hormone receptors in mice (Grgurevic et al., 2012;

Shah et al., 2004; Wersinger et al., 1997; Wu et al., 2009; Xu et al., 2012; Yang et al., 2013;

Zuloaga et al., 2014). It is presently unclear whether these interconnected pathways are

composed of distinct circuits that control each of these behaviors. Alternately, these regions

may comprise a single neural circuit controlling both mating and aggression.

In fact, the neurons within these regions (Figure 5B) are molecularly heterogeneous and

control diverse behaviors (Choi et al., 2005; Shah et al., 2004; Swanson, 2000; Xu et al.,

2012; Yang et al., 2013). How such molecular heterogeneity translates into behavioral

pleiotropy is unclear. We have recently examined this issue in the VMHvl and linked a

molecularly discrete neuronal population to some, but not all, behaviors controlled by this

area (Yang et al., 2013). The VMH is molecularly heterogeneous, and neurons within or

adjacent to the VMH regulate female sexual behavior, aggression, defensive reactions to

predators, and energy balance in diverse animals, including humans (Goy and Phoenix,

1963; Hess and Akert, 1955; Hetherington and Ranson, 1940; King, 2006; Kow et al., 1985;

Kruk et al., 1979; Kurrasch et al., 2007; Lin et al.,2011; Mathews and Edwards, 1977;

Musatov et al., 2007, 2006; Olivier and Wiepkema, 1974; Pfaff and Sakuma, 1979a, 1979b;

Reeves and Plum, 1969; Robarts and Baum, 2007; Silva et al., 2013; Swaab, 2003; La

Yang and Shah Page 13

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Vaque and Rodgers, 1975). Experimental lesions or other manipulations that do not target

molecularly distinct neurons within the VMH can yield conflicting behavioral phenotypes

(see for example (Kow et al., 1985; Pfaff and Sakuma, 1979a, 1979b; La Vaque and

Rodgers, 1975)), presumably reflecting nontargeted manipulation of heterogeneous neurons

or fibers of passage within this region. Importantly, none of these studies have determined

the role of molecularly distinct VMH neurons underlying female sexual behavior or male

aggression. To resolve these issues, we used genetic tools to ablate adult PR-expressing

VMHvl neurons, which represent ~10%–20% of all cells within the VMH. We found that

these neurons are required for the normal display not only of female sexual behavior and

male aggression, but also male sexual behavior (Yang et al., 2013). A role of VMH neurons

in male sexual behavior was not revealed even with optogenetic manipulation of

molecularly unidentified neurons within this region (Lin et al., 2011), illustrating the power

of genetic targeting of molecularly identified neuronal subsets within heterogeneous regions

such as the VMH (Yang et al., 2013). Importantly, these PR-expressing neurons are not

required for other VMH functions such as maintenance of normal body weight. In summary,

molecularly distinct VMH neurons appear to underlie the functional diversity of this region.

How PR-expressing VMHvl neurons influence both male mating and aggression is unclear.

In one scenario, this population consists of molecularly distinct neuronal subsets that sub

serve one or the other behavior in a labeled-line manner (Figure 9A). Thus, activation of the

appropriate VMHvl subset would elicit mating or fighting. Our observation that PR-positive

VMHvl neurons influence both male mating and aggression, but not feeding, is also in

accord with Tinbergen’s proposal that these two behaviors are more closely allied to each

other than to feeding (Tinbergen, 1951). In his scheme, the reproductive instinct includes

mating, aggression, nesting and parental care, but is distinct from the instincts for sleep,

feeding, or defense from predators. Tinbergen reasoned that behavioral decisions for

instinctual displays are hierarchically organized. In his model, high level decisions would

enable an animal to enter a state promoting reproductive rather than, for example, feeding

behavior; a lower level decision would subsequently enable an animal to mate, fight, or

nurse. He further proposed that such a behavioral hierarchy would be reflected in a

hierarchical organization of the underlying neural substrates such that behavioral choices

would be made and enforced via cross-modal inhibition of neuronal populations governing

comparable decisions at a similar level of the hierarchy (Figure 9B). In the case of the

VMHvl, if the PR-positive cells can be further subdivided molecularly into subsets that are

dedicated to male mating or fighting, Tinbergen’s model predicts inhibitory interactions

between these two populations. However, any such cross-modal inhibition must be quickly

reversible because male mice can mate and fight with the appropriate target when presented

simultaneously with a male and female conspecific (Leypold et al., 2002). Although not part

of Tinbergen’s original proposal, it is tempting to speculate that there are similar cross-

modal interactions even for different instincts, a notion supported by the close proximity of

PR-positive VMHvl neurons with VMH neurons that regulate feeding and responses to

predators.

Both the labeled-line as well as the cross-modal inhibition models rely on PR-expressing

VMHvl neuronal subsets that control either mating or aggression (Figure 9A, B). However,

it is also possible that the same neurons mediate both male mating and fighting via distinct
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patterns of neural activity or the release of specific neuro modulators (Figure 9C) (Marder,

2012). In this scenario, the activity of PR-expressing VMHvl output neurons would not only

depend on afferent input and hormonal signals but also be contingent on feedback loops or

local networks between these cells. Such recurrent connectivity can lead to secondary

network dynamics with stable, or attractor, states (Hopfield, 1982, 1984). In this model, the

output of the PR-positive VMHvl neurons would depend on the dynamics of external input

and local connectivity and promote (or inhibit) the display of a particular behavior when a

stable state is achieved. Importantly, such a model does not necessitate invoking molecular

heterogeneity within the PR-expressing VMHvl neurons, although if the local network

consists of both output neurons and interneurons then these two cell types will be

molecularly distinct.

Presumably other models can also be invoked to explain the dual control of mating and

aggression by PR-expressing VMHvl neurons. The MeA, BNSTmpm, POA, and other

regions implicated in mating and aggression (Figure 5B) are also molecularly heterogeneous

and behaviorally pleiotropic. It is possible that one or more of the scenarios we have

discussed for the VMHvl (Figure 9) also underlie the functional pleiotropy of these regions.

Moreover, whether the entire neural circuit(s) for mating or aggression utilizes one or the

other models exclusively is an open question.

A common theme emerging from the studies of mating and aggression in flies and mice is

the modular or specialized nature of the function of individual neuronal populations. In other

words, distinct neuronal pools appear essential for the performance of different components

of the same behavior. Distinct neuronal clusters are also required for the performance of

various components of male fly courtship song and copulation (Kim et al., 2013; Kimura et

al., 2008; Kohatsu et al., 2011; von Philipsborn et al., 2011). Our studies with PR-expressing

VMHvl neurons show that these neurons control male mating and aggression, but sex

discrimination, conspecific grooming, ejaculation, and territorial marking are unaffected

(Yang et al., 2013). Recent work from Rao and colleagues indicates that sex discrimination

and sexual preference are regulated by serotonergic neurons located in the hindbrain (Liu et

al., 2011b). Taken together, these studies suggest that different elements of mating and

aggression are encoded, to a large degree, by distinct neuronal populations. It is presently

unclear how such functionally modular neurons interact to generate a cohesive display of

mating or aggression.

Conclusions and future directions

There have been significant recent advances in understanding how the brain generates

sexually dimorphic behaviors. Gonadal sex hormones control the overall repertoire of male

and female typical behaviors, and genes downstream of sex hormone signaling appear to

control specific components or routines of these behaviors (Xu et al., 2012). Most sexual

dimorphisms in the brain manifest as hormone-regulated quantitative differences in cell or

molecular properties of neurons, and in at least one instance such sexual dimorphisms have

been shown to control distinct behaviors in the two sexes (Yang et al., 2013). Coupled with

modern neural circuit mapping tools, the recent dramatic advances in systematic gene

expression profiling, genetic manipulations, and potential deorphanizing of many
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pheromone receptors will lead to rapid progress in understanding how sex is represented in

the brain and transformed into gender-typical behavior in mammals (Isogai et al., 2011, Luo

et al., 2008, Mardis, 2008, Wang et al., 2013 and Xu et al., 2012). We anticipate that such

insights into how sex differences in the brain control sexually dimorphic behaviors in health

will eventually translate to understanding the startling sex differences in many common

neuro-psychiatric illnesses. Indeed, at least some sexually dimorphically expressed genes in

the brain appear to be linked with such human disorders that occur in sex-skewed ratios (Xu

et al., 2012).

Many of the same sexually dimorphic brain regions have been implicated in the control of

both mating and aggression. Most of these regions contain pools of molecularly

heterogeneous neurons, and with few exceptions (Yang et al., 2013), it is unclear whether

molecular heterogeneity within a region always translates into functional specialization such

that different neuronal pools, marked by unique sets of genes, regulate different behaviors.

Alternatively, such molecular heterogeneity could be used to construct unique network

dynamics that generate different behaviors based on afferent input, hormonal signals, and

past experience. A resolution of this issue of heterogeneity in conjunction with anatomical

neural circuit mapping will provide insight as to how the same brain regions encode mating

and fighting.

Although mating and aggression are innate behaviors such that they can be displayed

without prior training, they are nevertheless modified by past experience. For example,

repeated defeat in aggressive encounters renders a male mouse more liable to defeat in

subsequent encounters (Russo et al., 2012); such a submissive male also marks his territory

only sparsely in comparison to naïve or dominant males (Desjardins et al., 1973). Significant

progress has been made in understanding the molecular and cellular basis whereby such

social defeat modifies reward, stress, and defense pathways in the brain (Russo et al., 2012),

and it will be interesting in future studies to extend these analyses to the core circuits (Figure

5B) that mediate mating and fighting. Mating and aggressive displays are often dramatically

plastic in some species; for example, submissive male cichlid fish can, within minutes of

removal of a dominant male from their vicinity, start behaving like a dominant male

(Fernald, 2012). Mated prairie voles exhibit aggression toward unfamiliar intruders,

including those of the opposite sex, whereas sexually naïve voles do not typically attack

members of the opposite sex (Carter and Getz, 1993; Insel, 1997). We anticipate that work

in these model systems will provide insight into the neural substrates for plasticity in

otherwise hard-wired behaviors.

Studies in mice reveal a surprising modularity at molecular and cellular levels in the control

of mating and aggression. Indeed, gene deletion or genetically targeted functional

manipulation of restricted neurons generates very specific deficits in one or more

components of sexual or aggressive displays while leaving other components intact. It is

tempting to speculate that other components of courtship and territoriality such as birdsong

are also controlled in a modular manner by specific neuronal pools and genetic loci. In fact,

we anticipate that modular control of diverse behaviors, learned or otherwise, may turn out

to be a general organizing principle for the underlying neural circuits. It will be interesting

to test whether other behaviors (such as predator-defense) that are also usually thought to be
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associated with emotional states are encoded by a modular genetic and neural architecture.

Recent studies in Peromyscus show that individual parameters of species-specific tunnels

built by these mice are controlled in a modular manner by a few genetic loci (Weber et al.,

2013). Similarly, different aspects of schooling behavior in stickleback fish also appear to be

controlled by distinct genetic loci (Greenwood et al., 2013). Such genetic

compartmentalization of behavior presumably affords rapid evolvability of circuits and

behavior, in a manner perhaps analogous to exon shuffling that leads to the generation of

genes that encode proteins with novel combinations of functional domains.
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Figure 1. Neural circuits that can generate sexually dimorphic behaviors
Simplified wiring diagram of some neural circuit configurations that can generate sexually

dimorphic behaviors. Although only circuits driving male-specific behaviors are shown for

clarity, similar circuits will exist for female-specific behaviors. The axon termini of all

neurons except those of motor neurons end in small solid circles to show that they may

transmit effectively excitatory, inhibitory, or neuromodulatory output. Termini of male

motor neurons are shown as arrows to illustrate stimulation of the muscle groups required

for the behavioral display. By contrast, female motor neurons are not shown to have termini

to depict lack of activation of the male-specific behavioral program.

(A) The entire neural circuit for generating a male-specific behavior is only present in males.

(B) Sensory neurons unique to males feed into a shared neural circuit to activate a male-

typical behavior.

(C) Motor neurons unique to males are regulated by a shared neural circuit to activate a

male-typical behavioral response.

(D) Sensory and motor neurons are shared between the sexes but there are sex differences in

intermediary neuronal populations. Most sex differences in intermediary neurons appear to

be quantitative rather than qualitative in mice; in other words, the comparable neuronal

population is shared between the sexes, but it displays cellular or molecular sexual

dimorphisms that permit activation of the behavior only in males.
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Figure 2. Sex determination and sexual differentiation of behavior
(A) In mice the presence or absence of Sry drives the differentiation of the bipotential gonad

into testes or ovaries, respectively. Sex hormones released into the circulation by the gonads

act on their cognate receptors to organize the brain during development and to control the

activation of sex-typical behaviors in the adult. In males, estrogen organizes the neural

substrates for behavior neonatally, and both estrogen and testosterone activate these

pathways for male-typical behavior in adults. In the absence of the neonatal organizational

effect of estrogen, the default differentiation program of the brain is female although this

hormone may be important in adolescence for maturation of the neural substrates underlying

female sexual receptivity (not shown) (Bakker et al., 2002; Brock et al., 2011). Both

estrogen and progesterone activate the neural circuit underlying this behavior in adult

females.

(B) The sex of a fruit fly is determined in a cell autonomous manner, with the expression of

sex lethal (Sxl) specifying a female differentiation program. Sex-specific splice forms of

doublesex (Dsx) and fruitless direct the cell autonomous differentiation of neurons that

control sex-typical behaviors. Ix, intersex, and Tra, transformer.
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Figure 3. Sex hormone control of sexually dimorphic behaviors
Sex hormones produced in the gonads cross the blood-brain barrier and bind to hormone

receptors in neurons to regulate sex-typical behaviors. In males, testosterone directs

behavior by binding to its receptor AR or it is converted via aromatase into estrogen, which

binds to its cognate receptors ERα and ERβ. In females, estrogen and progesterone direct

behavior via their cognate receptors ERα and ERβ and PR, respectively.
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Figure 4. Pheromone sensing pathways
Schematic representing that pheromone sensing neurons in the main olfactory epithelium

and vomeronasal organ activate distinct neural pathways.

Dashed oval represents the AOB. Thin arrows to the MeA and BNSTmpm depict relatively

minor projections to these areas from the MOB and AOB, respectively.
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Figure 5. Sensory and hormonal control of sexually dimorphic behaviors
(A) Control of male pattern mating and aggression by chemosensory input and sex

hormones. (B) Schematic representing extensive interconnections between hypothalamic

and amygdalar nuclei that regulate sexually dimorphic behaviors. These areas process

pheromonal information, and subsets of adult neurons within each of these regions express

sex hormone receptors; neurons within some of these regions (blue) also express aromatase.

PAG, peri-aqueductal gray; PMV, ventral pre-mamillary nucleus; POA, preoptic

hypothalamus; VMHvl, ventrolateral component of the ventromedial hypothalamus.
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Figure 6. Mechanism and function of sex hormone action
(A) Function of sex hormone receptors in the nervous system during development

(organization) and adult life (activation). Not shown is the requirement of estrogen to

feminize sexual behavior, which occurs likely via ERα subsequent to the neonatal

organizational phase but prior to adulthood (Bakker et al., 2002; Brock et al., 2011).

(B) Schematic illustrating sex hormone action via nuclear hormone receptors. Sex hormones

are steroids that can cross the blood-brain barrier and cell membranes to bind their cognate

receptors. Hormone-bound receptor translocates to the nucleus, where it can regulate
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transcription of target genes by directly binding to specific DNA sequences. HRE, hormone

response element.
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Figure 7. Modular genetic control of sexually dimorphic behaviors by sex hormones
This model proposes that sex hormones control a sexually dimorphic transcriptional

program in the nervous system such that individual dimorphically expressed genes control

one or a few components of a sex-typical behavior. This model is supported by work

showing that genes downstream of sex hormone signaling (Brs3, Cckar, Irs4, Sytl4) are

required for the normal display of sexual or aggressive displays (Xu et al., 2012). Many

genes downstream of sex hormone signaling still remain to be identified.
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Figure 8. Function of sexually dimorphic neuronal populations
Neurons present only in one sex (qualitative sex difference) may either activate or inhibit a

sexually dimorphic behavior in that sex. More commonly in mice and other vertebrates, a

neuronal population is present in both sexes but presents sex differences (quantitative sex

difference) in gene expression, cell number, or other cytological feature. In such cases, the

neurons may be non-functional in one sex, regulate the probability of displaying a sexually

dimorphic behavior, or control the display of different sexually dimorphic behaviors in the

two sexes (functionally bivalent).
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Figure 9. The relation between molecular heterogeneity in and functional pleiotropy of sexually
dimorphic brain regions
Some models that can be used to relate molecular heterogeneity to functional diversity are

shown.

(A) Afferent and sex hormone inputs drive labeled line pathways to control different

behaviors. Such a labeled line pathway is a simplified version of a multi-layered feed

forward network.

(B) Afferent and sex hormone inputs drive labeled line pathways with cross-modal

inhibition to control different behaviors.

(C) The heterogeneous neurons constitute an attractor type network with local and recurrent

connections. Afferent and sex hormone inputs in conjunction with local circuits lead to a

stable state of the network that elicits behavior.

Molecular heterogeneity may afford a single neural circuit to utilize labeled line, labeled line

with cross-modal inhibition, and attractor network pathways at distinct synaptic stations.

Alternately, a single neural circuit may consist entirely of one or the other of these

pathways.
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